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PULSERS WITH A VARIABLE GEOMETRY OF THE
WORKING VOLUME AND THE EFFECT OF
PROCESSED COMPOSITES ON THE DYNAMIC
CHARACTERISTICS OF PULSERS

A. L. Nakorchevskii, B. 1. Basok, and UDC 532.54
A. 1. Chaika

We present a mathematical model of the operation of pulsers with flexible membranes that produce effects
typical of hydraulic shocks. Such devices are used as effective extractors, dispersers, and emulsifiers. We
show that the dynamic behavior depends on the physical properties and the composition of the medium being
processed.

Facilities with a variable geometry of the working volume, shown in the schematic diagram in Fig. 1, have
proved to be effective emulsifiers, dispersers, and extractors. They consist of chamber 1 with symmetrically
positioned rubber membranes 2 and a connecting channel 3, whose lower part is immersed in the processed liquid
medium 4. The side surfaces of the chamber are connected, by means of branch pipes 5, with high- (R) and low-
(W) pressure gas vessels. The operating cycle of the facility is divided into two subcycles of successive connection
of the chamber to the vessels R and W; it leads to displacement of the membranes to the middle position and the
side surfaces of the chamber, respectively. This causes oscillatory motion of the processed medium in a continuous-
flow loop, which is accompanied by dynamic phenomena of hydraulic-shock type.

The parameters of the flow in the connecting channel are determined by the theorem on the change in
momentum in the form of a Lagrange-Cauchy integral, which in a one-dimensional approximation with account for
energy losses has the form
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where the quantity / denotes the geometric combination
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the subscripts @ and b in (1) relate the quantities to the cross sections x, and xp; the subscript x indicates the need
to obey the correspondence between v and S according to the continuity equation. The sign of the quantity v,
corresponds to the direction of the x axis in Fig. 1. Expressions (1) and (2) acquire an especially simple form when
S = const. After the rubber membranes have been pressed to the inner surfaces of the chamber, the elasticity of
the rubber will result in the inflow of an additional amount of mixture in the time 8¢ according to the equation

d
v, S5t =3V, = V,%, 3

which is valid in the region of elastic deformation of the rubber, or in differential form
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Fig. 1. Schematic of a pulser.
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In the case of outflow (v, < 0), the pressure p, will decrease according to Eq. (4).

In [1] the following assumptions were made: a) the rubber membranes are absolutely flexible and do not
respond to tension forces; then the pressures on both sides of a membrane are identical; b) the gas routes do not
offer substantial resistance to the motion of gas in them. Thus, when the chamber was connected both with the
vessel R and with W, the pressure p, was assumed to be equal to pr or pw, respectively, and the solution of Eq.
(1) uniquely determined the functions vy; = vy;(#) when the chamber was being filled (i = W) and emptied (i =R).
The calculated time of these subcycles was determined by the integral

3

Vch=£ vail Sxdt. (5)

The system of equations (1), (4) made it possible to calculate shock phenomena and the damping vibrational
process.

The practice of operating individual types of such facilities caused one to abandon the assumptions made
in [1] because of the substantial resistance of the distributing gas-charging valves installed in them. If we assume
that the gas escapes adiabatically through the valves, then the expressions for the mass flow rate of the gas G will
have the form:

a) when connected to the vessel R:

k=1
Ggp = — uplp '\/(TC%IC'TPRPR) ﬂ]lz/k V(l - B k ) > (6)

b) when connected to the vessel W:

k=1
Gw = #wiw \/ (}Z_Llpmpm) By © \/ (1 - Bw' ) ; M
here
2 e 2 a
Pm k=1 D k-1
Br = max [E, (m) ] , Bw = max [;—:%, (k-l-—l) :| . ®)
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In calculating the volume flow rates of the gas Qr and Qw we can assume that the gas obeys the Clapeyron
cquation:

Pmem
Pmem = RTy " ®)

The sagging of a membrane is determined by the pressure differential on it [2] and, consequently, there is a
relationship between the volume displaced by the membrane and the pressures p; and ppnem:

Eh
pazpmem—ATVS’ (10)
Rmem
where
t
V=—V_+05[|v]|S,dt (11
0
on connection to the vessel R and
‘ (12
V=V, —0.5fvSdt )
0

on connection to the vessel W. Calculations according to [2] give the value of the coefficient A within the range
0.587—0.889. Equations (10)-(12) show that the relationship between p, and pyen changes radically in transition
through the plane of zero membrane sagging.

Using Eq. (9) at T, = const, the mass conservation equation for the gas in the chamber is transformed
into equations that determine the change in the gas pressure ppem:

dp P
— = (Qr — 0.5 [ S V::; 13

on connection of the chamber to the vessel R and

dp p
T = (0.5%,S, — Oy) V"‘e";v (14)
mem

on connection of the chamber to the vessel W. The volumes Vpenr and Vygenw are as follows:
t t
Vaoemg = Vo + 0.5 [ |vi| Sedt, Vyemw =Vo+ Vo + V, — 0.5 [v.S,dt. (13)
0 0

The relations presented here suffice to calculate the changes in the dynamic characteristics of the facility
on its connection to the vessel R (relations (1), (5), (6), (8)-(11), (13), (15)) and to the vessel W (relations (1), -
&, (OH-10), (12), (14), (15)), as well as the oscillatory process connected with hydraulic shock (relations (1),
(4)). For some facilities it is also necessary to take into account vibrational phenomena appearing after the limiting
contact of the membranes in the middle of the chamber. Since in this case the membranes are in a limiting position,
a subsequent decrease in the pressure in the chamber p, relative to the working-gas pressure ppem Will not cause
displacement of the membranes. Subsequently, opposite conditions appear, i.e., p; > Pgem,» Which are realized in
hundredths-thousandths of a second and, due to the time lag of the mechanical system of the membranes, will also
not lead to a change in their position. The more so, that the action of p, is restricted to a narrow annular region.
Therefore, in the case of the limiting position of the membranes only the influence of elastic deformation of the
membrane material on the displacement of the medium in the section a—a (see Fig. 1) must be taken into account:
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Fig. 2. Dynamic characteristics of a pulser in the case of a degassed liquid.
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where kgem = 1. When the membranes are pressed to the side surfaces of the chamber, kpem = 1. An example of
calculation of such a pulsating facility is presented in Fig. 2 (L = 0.75 m, H# = 0.30 m, d = 0.1 m, Sy =
0.785-1072 m? = const, pp = 3- 10° Pa, pw = 0.3- 10° Pa, py = 10° Pa; the net volume of the chamber is Vg, =
20.56-1073 m3, the volume of the rubber membranes is V, = 2.95 1073 m? and that of the gas route is Vg =
3.92-1073 m3, the effective area of the gas valves is up/p = pwfw = 9.03- 1074 mz, the elastic modulus of the rubber
is E=5-10° Pa, the medium is degassed water, the working gas is air, T = 293 K, kyeq = 0.2 and 1.0). The initial
conditions for the subcycle “connection to R" were the conditions of complete damping of oscillations at the end of
the subcycle "connection to W":

Vx (0) =0 » Pq (0) = pa(O) » Pmem (0) =Pw: (17)
and the initial conditions for the subcycle “connection to W" were
v (0)=0, p,(0) = Pa(0)» Pmem 0) = pr» (18)

where p,(0) is the hydrostatic pressure calculated from Eq. (1) for vy = dv,/dt = 0.

In Fig. 2 vibrational phenomena are represented by several periods. For the time being we will refrain from
commenting on the data obtained. We will only emphasize that the processed medinm was assumed to be degassed,
entirely incompressible, and "rigid,"” and this led to the possibility of passage of pressures to the negative region
of values. ‘

At the same time there are a number of liquid systems that contain a certain amount of gas dissolved in
them and/or tend toward vapor formation on pulsation treatment. Sometimes a technology of treatment leads to
penetration of a certain amount of gas into the chamber. The vapor-gas phase in such systems already acts as a
damping factor on the dynamics of the pulsating processes that develop in the chamber and the connecting channel.
For a reliable description of these phenomena in the case of a “nonrigid” processed medium, the latter must already
be considered as two-phase with possible interphase momentum, mass, and energy transfer. According to [3, 4],
the system of equations of motion for a two-phase barotropic medium in the spatially one-dimensional
approximation has the form

a a . .
5, Pi BiS) + 52 (0; BiS) = (Mj; — M) S,
(19)
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Numerous calculations showed [4] that under nonuniform and unsteady-state conditions of motion the
effect of the additional mass on the vapor-gas phase leads to a comparatively small relative "slippage” of the phases.
Therefore, in a first approximation we assume

Vl = V2 =v, (20)

which substantially simplifies the equation of the dynamics in system (19). Moreover, in view of the small mass
content of the vapor-gas phase compared to the liquid phase the equation of the dynamics can be neglected for the
gas-vapor phase. Then system (19) will have the form

FY (Pl BS) + o~ (Pl ByvS) = (My — M) S,

(1)
o > (02 B25) + 3 (Pz ByvS) = (M ~ My) S,
v av G oZ dp T
PLo; ¥PIV 5 =P10x 3 o TR
Integrating Eqs. (21) over x from x; to x, (see Fig. 1), for the case S = const we have
Xa 6B Xa (le - Mlz)
(e Ldx + Byv)g— By = J ——dx,
xb Xb 1
*a 3 (p, By) *a . )
22
J —5 T dx + (o2 By)g — (2 By = | (Myp — My)) dx,
xb xb (22)

*a gy v2 v2
P1 f 6tdx+ f—dx+ Pi18Z+p+p+ 5 png+p+p17 .

x Xp

where r is the hydraulic radius of the channel.

Let us consider conditions that make it possible to determine more precisely the form of the functions
entering into Eq. (22) and the values of some of them on the boundaries of the region of integration. To increase
the efficiency of pulsation treatment of the medium the amount of the "expelled—absorbed” portion of it must be
minimal, at least it must not exceed a tenth of the connecting channel volume. The pressure pp in the section
b—b is close to atmospheric, and the amount of the vapor-gas component in the mixture under such conditions is
small. Therefore, we may assume that in pulsation treatment there is no change in the mass of the vapor-gas phase
due to mixture motion in the connecting channel. The quantities entering into Eq. (22) are functions of x and ¢,
and for multiperiod oscillations the solution of system (22) is rather laborous. System (22) can be simplified
considerably with an accuracy sufficient for practice, if one is guided by to certain mean values of the quantities
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over the channel length L = (x, — xp). Using the mean-value theorem with account for the foregoing, Eqgs. (22) are
transformed to

d{(B Sy — (i
L0 | 5y~ 59 = 2 )= ),
d B ) '
ﬁ—z‘%’—@ = (M}p) — (My)),

(23)
2 2 2
d{v V) . v
P1L_d(t‘2+P1 (EC)%Slgn(V)+ [png+p+p1 7) = [png+p+p132—) )’
a

(B) + (B =1.

The notation in angular brackets relates the quantities to the mean values over the channel length, (X) is the
overall coefficient of hydraulic resistances in the continuous-flow circuit. The value of v, is calculated from Eq.
(16). We consider that the parameters of the vapor-gas component are determined by the Clapeyron equation:

() = (o) RT, (24)

In the case of adiabatic vapor generation, T3 should be assumed to be equal to the saturation temperature, T =
Ts((p)) [4]. The values of the quantities on the boundaries of the region of integration can be connected with their
mean values by linear relations:

Pa=2p)—py, vp=2() —v,, B, =2(B}) - By, (25)

where By, pp can be assumed to be constant and to be determined from the conditions at the cut of the connecting
channel. It can also be assumed that the regime of motion in the channel is close to complete mixing. Then from

the last two relations of (25) we have

vy ={v), Bj,=(B;) when (v)<0;

(25a)
v ERVACH By,=1 when () >0
b B, b ’ la .
We assume that the vapor-gas phase in the connecting channel has the form of spherical bubbles and is charac-
terized by their number N; and the representative radius {(R;). The latter can be found from the balance relation:

37(3(B
(R;) = [4,([:2)] , 6)

where ny = N/LS is the number density of the bubbles. The volume density of the rate of interphase transfer is
determined according to the Hertz—Knudsen—Langmuir formula:

(MXZ) _ 28, M \%3 Dg 5)7;1) _ <§)5 3B ’
2 -, | 2R, Ty T,7) (Ry)
(27)
ity = P (M (4 ps () 360

where the accommodation coefficient B, < 0.8. Thus, the system of equations (16),. (23)-(27) consists of three
ordinary differential equations of first order that enter into Eq. (23), which should be solved for d{(B,)/dt, d{p)/dt
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(using Eq. (24)) and d(v)/dt, and algebraic relations. The expenditure of thermal energy for vapor generation in
the connecting channel is so small that it is admissible to assume the liquid-phase temperature to be T = const. It
can easily be verified that system (16), (23)-(27) turns out to be closed on introduction of the approximations T3
= Ts((p)), ps = ps(T|) and assignment of ny and the initial value Rog (or Byg).

Let us now consider the case where initially there is a certain quantity of gas in the chamber and the level
of the "rigid" medium at the time ¢ = 0 has the mark Zg reckoned from the lower cut of the channel. If we assume
that the gas parameters obey Eq. (24) and the cross section of the channel is constant, then the computational
system of equations will have the form

2

dv 1 v
dt = pz |Pr T P8H — Py~ pgZ — (20) p 7 signv|
az _
dt =V
(28)
L—2Z,
Pa=Pa0 "7 -
Under the initial conditions
t=(), v=v0,Z=ZO,pa=paO (29)

we have a Cauchy problem. Here 2 =1 + 1Z/d.

Thus, we have mathematical models that describe the dynamics of the processes in facilities with a variable
volume in the cases: A — of a degassed ("rigid") processed medium (1)-(16); B — of a medium with gas inclusions,
shock phenomena in which are described by Egs. (16), (23)-(26) at M,-,- =0, j=1, 2); C — of a medium with
interphase transitions (evaporation—condensation), shock phenomena in which occur according to Egs. (16), (23)-
(27); D — of a medium with a gas cavity in the chamber according to the additional equations (28) and (29).

Model C is divided into two submodels: C1 (with the assumption of possibly complete vapor-phase
condensation) and C2 (for the case of a binary gas having a noncondensing component (for example, a steam—air
system)). It should be emphasized that here relations are given that describe vibrational phenomena after the
pressing of the membranes against the side surfaces of the chamber or after the limiting contact of the membranes
in the middle plane of the chamber. The subcycles "connection to R" (expulsion of the medium from the chamber)
and "connection to W" (intake of the medium into the chamber) are common to all the models; they are interpreted
according to the dependences given in the beginning of the paper.

To reveal the special features of each of the models enumerated above, we carried out numerical solutions
of the corresponding systems of equations for a pulsating facility with the parameters given above, to which the
initial conditions for the bubbles must be added: n = 10'® m™3, Ry0=3.6- 1075 m, Ba = 0.04. The thermophysical
parameters of steam were calculated according to the approximations given in [4].

As has already been noted, Fig. 2 presents the dynamics of the changes in the pressures and velocities
according to "rigid" model A. The duration of the subcycle "connection to the vessel R" itself was 0.26 sec and the
speed of expulsion of the medium from the chamber exceeded 12 m/sec. After complete expulsion of the liquid
from the chamber, due to the limiting rigidity of the medium (the elasticity modulus Epeq - ®) instantaneous
deceleration of it occurs, which is accompanied by a pressure drop in the chamber to the level determined by the
hydrostatic conditions. Since at the instant of deceleration the pressure of the working gas on the membrane py
was somewhat below the pressure pg in the receiver R, "supercharging” of the gas to the value pyeqm = pr Occurs in
about 0.01 sec. The equilibrium developed in this case in the system may persist indefinitely. After transition to
the subcycle "connection to the vessel W" the conditions of hydrostatic equilibrium in the chamber and the
connecting channel will be preserved until the working-gas pressure pmem falls to the value p, ("blowing-off of the
gas™), followed by speeding-up of the liquid characterized by a drop in the pressure in the chamber p, virtually to
the value pw and by attainment of an intake velocity on the order of 7 m/sec. After the pressing of the membranes
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Fig. 3. Dynamic characteristics of a pulser in the case of a liquid with gas
bubbles.

to the side surfaces of the chamber and deceleration of the medium, smoothed by the elasticity of the rubber
diaphragms, a pressure increase and then a decrease in it occur with a corresponding change in the direction of
medium motion. The amplitudes of the changes in the pressure and velocity attain values that exceed 6- 10° Pa and
6 m/sec, respectively. The frequency of damped vibrations is f, =~ 20 Hz. It is natural that the limiting rigidity of
the medium was responsible for the transition of pressures to the region of negative values.

The dynamics of the vibrational processes will be quite different in the case of implementation of model B,
presented in Fig. 3. Here, the medium processed was considered to contain air bubbles with a number density of
inclusions nyg = 10" m™3, an initial radius Ryp = 1.68- 107% m, and a constant temperature T2 = T = 293 K.
Equation (24) does not allow one to cross the zero threshold of pressure values. A region of very low pressures
decreasing to 0.001 - 10° Pa appears that is extended in time and subsequently converts into small zones of pulselike
high pressures (up to 8- 10° Pa). A comparison of the vibrational processes that followed the pressing of the
membranes in the middle plane of the chamber (a time segment from ¢ = 0.25 sec) and the pressing of the
membranes to the side surfaces of the chamber (a time segment from ¢ = 1.085 sec) shows distinctly the effect of
the dynamic pressure of the medium at the instant of deceleration. The larger this pressure, the narrower the zones
of pulsed pressures and the higher their greatest values.

Since, as noted above, the "speeding-up” subcycles are identical for all the models, Fig. 4 demonstrates
the change in the fundamental parameters of the vibrational phenomena respectively after the pressing of the
membranes in the middie plane of the chamber and after the pressing of the membranes to the side surfaces of the
chamber for model C2. It was assumed that the noncondensing portion of the gas-vapor phase Mg = 4.18- 1073
kg and that the water temperature was increased to the value T, = 383 K. Calculations showed that a characteristic
feature of vapor generation in model C is a very slight decrease in the pressure (p) with respect to the saturation
pressure ps. Therefore, the lower threshold of pressures here is substantially higher than the lower threshold
obtained in calculations by model B.

The region of low pressures was also found to be more extended. A pronounced increase in the frequency
of vibrations in the course of their damping was also established. The plot that characterizes the change in the
function (B,) presents the time segments of the durations of vapor generation, condensation, and compression-
expansion of the noncondensing portion of the gas-vapor phase, denoted by v.g., cond., and c.-e., respectively.
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Fig. 4. Dynamic characteristics of a pulser in the case of a medium with
interphase transitions (evaporation—condensation) after the pressing of the
membranes in the middle plane of the chamber (a) and against its side
surfaces (b).

Fig. 5. Dynamic characteristics of a pulser in the case of partial filling of the
chamber with gas after the pressing of the membranes in the middle plane of
the chamber.

Finally, Fig. § presents results of calculations by model D under the following initial conditions: ¢ = 0, vy
= —12.52 m/sec, Zg=0.73 m, pyy = 2.89- 1073 Pa. As follows from Fig. 5, the presence of a comparatively small
gas cavity (of the height h=L — Zy=0.02 m) confined to the upper portion of the facility leads to the development
of highly intense dynamic effects. Here the calculated peak pressure attains values of the order of 107 Pa. True
enough, the extreme values of the pressures damp very rapidly. With a decrease in the initial value Zg, the damping
effect of the gas increases (when Zg = 0.72 m, pomax = 13- 10° Pa; when Zg = 0.70 m, pymax = 4.7- 10° Pa).

It follows from the foregoing that comparatively simple methods of variation of the properties of the medium
treated lead to substantially different dynamic parameters of pulsating devices. Therefore, the mathematical models
presented here make it possible to compose the treated media intentionally in order to obtain the final result
required.

NOTATION

d, channel diameter, m; H, depth of immersion of the connecting channel into the medium, m; L, length
of the connecting channel, m; E, elasticity modulus of the rubber, N/ mz; Fp, F, volumetric density of the
interphase-interaction force due to the additional mass and velocity nonequilibrium, respectively, N/ m3; f, open
area of the valve, m2; G, volumetric density of mass forces in the x direction, m/ secz; £=9.81m/ secz; h, thickness
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of a membrane, m; Q, volumetric flow rate, m?/ sec; k, adiabatic exponent; k(p), efficiency of pulse transfer; M,
mass of a kilomole, kg/kmole; M, volumetric density of the rate of interphase mass transfer, kg/ (sec-m?); D,
pressure, N/ m2; Ryem, radius of a membrane, m; Rcpan, radius of the connecting channel, m; S, open area of the
channel, m2; T, temperature, K; Ty, saturation temperature, K; £, time, sec; V, volume between a membrane and
the plane of its zero sagging, m3; V., portion of the working volume of the chamber between the middle plane of
the chamber and the plane of zero sagging, m3; V_, same between the side surface of the chamber and the plane
of zero sagging, m3; Vo, volume of the gas cavity between the valve and the chamber, m>; V;, volume of the rubber
membranes, m3; Ven, working volume of the chamber, m3; v, velocity, m/sec; x, longitudinal coordinate, m; Z,
leveling height, m; R, gas constant, J/(kg-K); Ry, universal gas constant, J/ (kmole-K); B, indicator function of a
phase; 3¢, coefficients of hydraulic resistances; A, coefficient of hydraulic friction; u, coefficient of discharge of the
valve; p, density, kg/ m3; 1, wall-friction stress, N/ m2. Subscripts: a, b, x, parameters in the cross sections a, b, x
(see Fig. 1); ch, parameters in the chamber; mem, parameters of the gas acting on a membrane; med, medium; i,
j, number of a phase; i, j = 1, the liquid phase; i, j = 2, the gas-vapor phase; ij, parameters of the transition i - j
on the phase interface ij.
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